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Abstract 

A three-axis Magnetometer/Kalman Filter attitude determination system for a spacecraft in low-altitude Earth orbit is 
developed, analyzed, and simulation tested. The motivation for developing this system is to achieve light weight and low cost for 
an attitude determination system. 

The extended Kalman filter estimates the attitude, attitude rates, and constant disturbance torques. Accuracy near that of the 
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damper, is a real satellite on which this attitude determination system will be used. 
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Three-Axis Attitude Determination via Kalman Filtering of Magnetometer Data 

by FranFois Martel, Parimal K. Pal, and Mark L. Psiaki 

1 Introduction 

1.1 Objective 

The objective of this work has been to develop a low- 
cost system for estimation of 3-axis spacecraft attitude 
information based solely on 3-axis magnetometer 
measurements from one satellite orbit. Such a system will be 
useful for missions that operate in an inclined, low-Earth 
orbit and require only coarse attitude information. It can also 
serve as the sensor part of a low-cost 3-axis closed-loop 
attitude control system, or as a back-up attitude estimator. 

A single 3-axis magnetometer measurement can give 
only 2-axes worth of attitude information and no attitude rate 
or disturbance torque information. Therefore, this attitude 
determination system must use a sequence of magnetometer 
measurements. It processes these measurements recursively 
in a Kalman filter. This paper, then, describes the design, 
development, analysis, and simulation testing of a Kalman 
filter and reports its expected performance. A follow-on, 
post-launch paper is planned to report actual performance. 

1.2 Backgroundhior Work 

Kalman filters have been widely applied to the problem 
of spacecraft attitude determination [l-71. Everything from 
star sensors 12.31 to sun sensors [4], gyroscopes [2], and 
magnetometers [4,5] have been used for filter inputs, and 
accuracies as fine as 2 arc sec. are possible [3]. 

Very few attitude determination systems have 
attempted to use only magnetometer data to estimate attitude. 
Perhaps this is because of the low accuracy of the 
measurements; even with perfect magnetometer 
measurements, inaccuracy of the knowledge of the Earth's 
magnetic field may introduce errors of 0 . 4 O  per axis. 
Perhaps such systems are rare because of the complexity of 
computing the Earth's magnetic field from spherical 
harmonic models [6]. In at least one case the benefits (low 
cost and low weight) have outweighed the costs and such a 
system has been developed. Heyler reports the use of such a 
system on the NOVA program [ 5 ] .  That system was able to 

estimate spin axis attitude with a 2 O  accuracy as well as spin 
rate. These estimates were based on one eighth of an orbit's 
worth of magnetometer readings. 

The K h a n  filter reported in this paper uses 50 to 300 
magnetometer samples distributed evenly over an orbit to 
estimate 3-axis attitude, attitude rate, and disturbance torques 
for a gravity-gradient-stabilized spacecraft. It is similar to the 
filter described by Heyler in that 3-axis information is 
derived purely from magnetometer measurement time 
histories. It differs from Heyler's filter in two respects; it 
estimates the attitude and rates for a different type of 
spacecraft, and it estimates disturbance torques. Also 
presented is a detailed accounting of the various 
contributions to estimation error, including the effects of 
spacecraft dynamic modeling error. 

13 Outline of Approach 

The remainder of this paper contains descriptions of 
the dynamic model of the spacecraft under consideration, the 
filter design, and the filter evaluation criteria and procedures. 
It concludes with the results of the filter evaluation. The 
spacecraft description discusses the type of spacecraft for 
which this filter will work and presents notation and 
equations necessary to the remaining sections. The filter 
design section presents the overall filter structure and two 
different gain selection techniques. The section on evaluation 
methodology describes the filter accuracy and stability 
performance criteria and the tools that were used to gauge 
these properties. The results of the accuracy and stability 
evaluations are presented in the final section, which includes 
examples of simulation time histories as well as numerical 
measures of performance. 
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2 Spacecrapt Dynamic Model 

2.1 MModOrbit Characteristics 

The Kalman filter discussed in this work is applicable 
to nadir pointing Earth satellites operating at low altitudes in 
inclined orbits. The inclination and low altitude of the orbit 
are necessary to the proper functioning of the filter. The orbit 
must stay close enough to the Earth, within about 4 Earth 
radii [6], so that a spherical harmonic approximation of the 
Earth's magnetic field gives a reliable attitude reference. 
Some inclination of the orbit is necessary to make the attitude 
of all three axes sufficiently observable. Pitch information in 
a l-orbit magnetometer time history gets poor for low 
inclinations, although theoretically. there is st i l l  some pitch 
information even in equatorial orbits; the Earth's magnetic 
poles do not coincide with its rotational poles. This study 
considers spacecraft in nearly circular orbits at 1.1 to 1.2 
Earth radii. Filter analysis and testing has been done for the 
inclinations 4 3 O  and 57'. 

2.2 Spacecraft Attitude Dynamics Model 

The generic spacecraft (S/C) under consideration is a 
gravity gradient stabilized spacecraft. One model also has a 
pitch momentum wheel for passive yaw stiffening and a 
magnetically anchored damper for passive libration damping. 
The following equations of motion model the spacecraft 
attitude dynamics for purposes of filter state propagation: 

h, = 0 (3) 

where a is the S/C's inertial angular velocity vector, 
I, is the moment and product of inertia matrix, n is the 
total extemal vector torque acting on the S/C, \ is the 

constant vector angular momentum of the pitch wheel, q is a 
quaternion that represents the orientation of the S/C-fixed 
coordinate system with respect to an Earth-fmed coordinate 
system, .(uscE is the S/C's Earth-relative angular velocity, 

and nd is the disturbance torque (the net unmodeled external 

torque). All of the above are expressed in S/C-fied 
coordinates except the quaternion. It is expressed in Earth- 
fixed Coordinates. Equation 1 is Euler's equation for rigid 
body rotational dynamics, and eq. 2 is the kinematic 
equation for a quaternion [6]. Equation 3 is special to the 
filter. It represents the mode led  disturbance torques. 

The net external torque acting on the S/C, n, has been 
divided into three components. gravity gradient torque, ngg, 
passive magnetically-anchored damper torque, nhP, and all 
other unmodeled disturbance torques, n,: 

n = ngg+ ndamp+nd (4) 

The first two of these torque components, when present, 
have been explicitly modeled for purposes of filter state and 
covariance propagation. 

The gravity gradient torque depends on the attitude 
quaternion, the ephemeris, and the moments and products of 
inertia: 

where t is the time. The gravity gradient model used in this 
study neglects J effects [6]. 

The magnetically-anchored damper torque depends on 
the SIC-fixed magnetic field unit vector and its time rate of 
change, which in tum. depend on the attitude quaternion, the 
Earth-relative S/C angular velocity, and the ephemeris [6]: 

where c- is the damping factor, 6 is the magnetic field 

unit vector in S/C-fied coordinates, and the derivative with 
respect to time is the total derivative (q is time varying). 

The mode led  disturbance torque, n,, may include the 

effects of atmospheric drag, solar radiation pressure, 
residual magnetic dipole moment, S/C dynamics modeling 
errors, or any other unmodeled extemal torques. No explicit 
physical model of any of these torques is included. Rather, 
this term is retained in an effort to estimate these torques in 
the filter by modeling them as a random walk process. 

The coordinate systems used in this study are a S/C- 
fmed coordinate system, an Earth-fixed coordinate system, 
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and an orbit-following coordinate system. The S/C-fixed 
coordinate system is a Roll-Pitch-Yaw coordinate system; 
the x axis is nominally+ parallel to the velocity vector, the y 
axis is nominally anti-parallel to the orbit normal, and the z 
axis is nominally along nadir. This reference frame is used to 

define the equations of motion and related equations. eq. 1- 
6, the inertia matrix, I,,, and the pitch wheel angular 
momentum, h,. 

The orbit-following coordinate system defines the 
nominal orientation of the gravity-gradient-stabilized S/C. Its 
z axis is exactly along nadir, its y axis is exactly anti-parallel 
to orbit normal, and its x axis is approximately parallel to 

velocity (exactly parallel in the case of circular, nondecaying 
orbits), Its only purpose in this study is as a point of 
reference for measuring roll, pitch, and yaw angles in 
reporting attitude results. 

The Earth-fixed coordinate system has its origin at the 

Earth's center. Its x axis passes through the equator at the 
Greenwich meridian, its y axis passes through the Equator at 
90° East Longitude, and its z axis passes through the North 
Pole. It is used to calculate the S/C ephemeris and the 
Earth's magnetic field, which are used in torque modeling 
and fiter update calculations. Because this reference frame 
rotates with the Earth, there is a difference between the S/C's 
inertial angular velocity, yx and its angular velocity with 
respect to this reference frame, %sc/E: 

(7) 

where A is the coordinate transformation matrix from Earth- 
fixed to SIC-fixed coordinates defined by q, and me = 

7.29~10-~ rad/sec is the Earth's rotational angular velocity. 
The angular velocity of the Earth as its revolves about the 
Sun has been neglected in this transformation. 

Table 1 lists the nominal values of the attitude 
dynamics parameters for two S/C examples. Spacecraft 1 is 
stabilized by a long gravity gradient boom with a tip mass, a 
constant momentum pitch wheel, and a magnetically- 
anchored damper. Spacecraft 2 has a gravity-gradient boom, 
but it is left neutrally stable in yaw. The tabulated parameter 
values (sometimes with deliberately introduced 
perturbations) apply to the analyses and simulations 
described below. 

23  Attitude Determination Hardware 

The only attitude determination sensor used by this 
filter is a 3-axis magnetometer. It measures the magnetic 
field vector in S/C-fixed coordinates: 

b =  A b  

where bw the magnetic field in the Earth-Fixed coordinate 

system, depends only on the S/C ephemeris. The A matrix 
depends on q, so eq. 8 defines the nonlinear measurement 
equation used by the extended Kalman filter. 

* In the absence of orbital eccentricity, librational motion, 
disturbance torques, or product of inertia terms. 
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2.4 A Linearized Altitude Dynamics Model 

Linearized equations of motion and sensor equations 
are useful for filter analysis and design. This involves 
linearization of eq. 1,2,4,5, 6, and 8. They are linearized 
about the nominal S/C attitude time history: z axis along 
nadir, y axis along negative orbit normal, and y-axis angular 
velocity equal to the orbital rate. The orbit is assumed 
circular and J, effects are neglected. As a further 

simplification, a dipole model of the Earth’s magnetic field is 
used [ 6 ] ,  and the field at the S/C is assumed periodic with 
the orbital period (the rotation of the field with the Earth is 
ignored). 

The attitude quaternion has been linearized in a special 
way. Instead if expressing q in terms of the sum of a 
nominal value plus a perturbation, it is expressed in terms of 
a perturbation quaternion times the nominal quaternion using 
quaternion multiplication: 

r A q l i  

(9) 

where, by definition of the nominal attitude time history, 
qnm defies the attitude of the orbit-following coordinate 

system. The perturbational quaternion is already normalized 
to within fist  order in the Aqi. This perturbational 

expression of the attitude has just three unknowns; the fourth 
is not needed because angles are small, the equations are 
linear, and no attitude singularity occurs. 

The linearized equations are 

A& = I&[An - AB x (IiNt&&, + h,) 

An = An,,+ An,,+nd (12) 

where A g  is the perturbational S/C angular velocity 
expressed in s/c-futed coordinates, a r b  is the orbital 

angular velocity expressed in orbit-following coordinates (its 
only nonzero element is its y element), p is the geocentric 
gravitational constant, rsc is the S/C geocentric radius, Iij is 
the i j  element of I,, 1 is the identity matrix, and b,, is the 

Earth‘s magnetic field vector at the S/C expressed in orbit- 
following coordinates. 

These equations can be combined in standard state 
vector format to yield a 9th-order system of the form 

AX = F(t) AX + z(t) (16) 

y = H(t) AX (17) 

where the state is defined as AxT = (Ag$,AqT,ndT) and 

where the observation is y = b x b orb. This defiiition of y 
retains all of the attitude information in the magnetometer 
measurements and gives an H(t) matrix consistent with the 
innovation defiition given below (eq. 21). The 9x9 F(t) and 
matrix and the 9-element z(t) vector are derived from eq. 3, 
10-14 and the defiition of Ax. The 3x9 H(t) matrix is 

derived from eq. 15 and the definition of y. F(t), H(t), and 
z(t) are all periodic at the orbital period because the magnetic 
field has been assumed periodic at the orbital period. The 
periodicity of this linear system can be used to advantage in 
filter design and analysis. 

A h  

The presence of z indicates that linearization has not 
been done about the nominal motion. As can be seen from 
eq. 13 and 14, the nonhomogeneous terms result from 
product of inertia terms (a gravity gradient effect) and from 
the time variation of the Earth’s magnetic field as 
experienced in the orbit following reference frame (a 
magnetically-anchored damper effect). Nonzero z means that 
the S/C is not exactly trimmed at its nominal orientation. 
This out-of-trim condition is not vary large (S- lo), and the 
linearized model is a good approximation for small 
perturbations from trim. 
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3 Filter Design 

3.1 Filter Mission 

The fiiter's mission is to estimate 3-axis attitude, 
attitude rate, and disturbance torque. The accuracy goal of 
the attitude estimates is on the order of k lo. This 
information may be required to run experiments off of a 
passively stabilized S/C or to provide feedback signals for 
active stabilization. For the former mission, the attitude 
estimation may be done in a ground station in batch mode 
once per orbit. When part of a feedback control loop, the 
filter will operate on board the S/C, recursively updating the 
attitude, rate, and torque estimates. 

The filter computer program must execute quickly for 
such missions. When operating in a ground station there is 
only a short time window for magnetometer data 
transmission, one orbit's worth of filtering, and subsequent 
experimentation. Less time spent filtering leaves more time 
for the primary mission experiments. When operating on 
board, the filter has more time to filter one orbit's worth of 
data, but filtering will be only one of many tasks for the on- 
board computer. Less time spent filtering means more 
computer time left for primary mission usage. 

33  Filter Structure and Gain Computation 

The basic filter structure is that of the typical sampled- 
data extended Kalman Filter: a state/covariance propagation 
phase alternating with a state/covariance update phase once 
for each sensor sample time. Figure 1 gives a block diagram 
of this basic structure and the associated information flow. 
In the figure, tk and are sample times, b,, is the vector 

of magnetometer measurements, j i  is the state estimate, P is 
the state estimate covariance matrix (not always used), and 
the (-) and (+) superscripts on 1 and Prefer to pre- and post- 
update values, respectively, at a given magnetometer sample 
instant. 

The state propagation portion of the filter is the usual 
nonlinear simulation of the system equations of motion, eq. 
1-3. Therefore, the state estimate in the extended Kalman 
fiiter is a 10-dimensional vector: 

x =  - [:] - 
n d  

where the (-) overstrike indicates an estimate. The state 
propagation algorithm computes 1 7 - ( t ~ + ~ )  as a function of 
?(&)by numerically integrating eq. 1-3 from time tk to time 
&+l starting from the initial conditions: 

Formally, one may consider this procedure the defiition of 
a vector functionJ and a discrete-time system: 

Filter state propagation and evaluation of the functionf are 
equivalent. 

The state update calculation in this filter is slightly 
different from the traditional extended Kalman filter update 
in several respects. The filter innovations, the method of 
updating the quaternion estimate, and the method of 
calculating the filter gain are all slightly different from 
standard extended Kalman filter practice. Each of these 
differences has been introduced in order to handle the 
nonlinearities in a manner better than brute force 
linearization. 

The cross product of the measured magnetic field unit 
vector with its pre-update estimate has been chosen for the 
innovation: 

where y is the innovation and where the (A) overstrike 
indicates a unit vector. The standard extended Kalman filter 
would simply take the difference between b,, and its pre- 

update estimate to form the innovation. The formula in eq. 
21 essentially throws out all of the length information in the 
measured magnetic field. Nothing is lost as there is no 
attitude information in the length. In the linear analysis, 
either innovation formula would give the same update, but 
the eq. 21 formula is to be preferred in the nonlinear case 
because its magnitude and direction both are physically 
significant; they defiie the magnitude and direction of the 
known angular error. 

The update formulas for the attitude rate and 
disturbance torque estimates take the usual form: 
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but the quaternion update uses quaternion multiplication 
instead of addition: 

with 

This form of the quaternion update explicitly recognizes that 
there are only three free variables in the quaternion and 
updates it accordingly. The Asud vector elements constitute 

the three free variables as in the quaternion update method 
described by Lefferts e t d .  [l]. The update preserves the 
quaternion's normalization. 

The three K matrices in eq 22.23, and 25 are the 
Kalman filter gain matrices. Because of the form of the 
innovation and the attitude update, the magnitude of the Kq 

gain matrix takes on physical significance. If the attitude 
determination system attempted to eliminate all of the 
measured attitude error at each measurement, & would be 
1/2 times the 3x3 identity matrix. This is because y and Aqd 

are both in the direction of the measured attitude error, but 
the magnitude of is proportional to the sine of the error 
while the magnitude of Aqd is proportional to the sine of 

half the error. 

Two Kalman filter gain selection schemes have been 
tried. One uses, with a few necessary modifications, the 
standard extended Kalman filter covariance propagation, 
gain calculation, and covariance update formulas. The other 
uses futed gains. The traditional extended K h a n  filter was 
used in order to get the best possible filter performance. The 
fixed gain filter was used in the hope of achieving acceptable 
performance at a greatly reduced computational load. 

The extended Kalman filter gain and covariance 
equations perform the necessary bookkeeping to derive 3- 
axis attitude information from the sequence of single-vector 
observations available to this filter. Modifications to these 
equations are necessitated by the nonstandard quaternion 
update, eq. 24 and 25, and by the nonstandard innovation, 
eq. 21. In addition, a discrete-time form of the covariance 

propagation equation is used in the interest of reducing the 
programming complexity; the continuous-time update would 
involve programming covariance differential equations; the 
discrete-time update involves only matrix arithmetic and 
calculation of the state transition matrix via numerical 
differentiation of thefI ] function (eq. 20). 

The discrete-time covariance propagation equation is 

where P is the 9x9 covariance matrix for the perturbation 
vector AxT = (Ag$,AqT,And). 
transition from Ax(&) to 
disturbance input covariance matrix. The Aq perturbation is 
defined in the same way as the Aqd perturbation in eq. 24. 
This use of the 3-element A q  instead of the 4-element Aq 
simplifies the filter because there is no normalization 
constraint on the elements of Aq. Thus, the 9x9 covariance 
is nonsingular, and the standard Kalman filter equations for 
gain computation and covariance update can be used [ 11. 

is the state 
and Q is the discrete-time 

The use of Aq affects the computation of the state 
transition matrix. Normally, it would simply be the 10x10 
matrix aflax. The expression of quaternion perturbations in 
terms of three independent components makes the state 
transition matrix 

which is a 9x9 matrix. The derivative of the quaternion with 
respect Aq is just 

where the Ci are the elements of @. This completes the 

covariance propagation formula. The approach of Lefferts et. 
ul. is essentially the same [l]. 
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The gain computation and covariance update formula: 
are the usual Kalman filter formula: [8]: 

where R is the measurement noise covariance matrix and 
Kk+l is the 9x3 filter gain matrix. The calculation of the 
observation matrix, H($+l) (as in eq. 17), accounts for the 

nonstandard innovation and the nonstandard quaternion 
update. The following formula gives the true H in the spirit 
of the extended Kalman filter: 

which is a 3x9 matrix. 

The fied-gain extended Kalman filter avoids the 
complexity of eq. 26-31 and the considerable computational 
burden of calculating the state transition matrix via numerical 
differentiation off[ 1. It can do this because fixed gains can 
stabilize the periodic observer associated with the periodic 
linearized system in eq. 16 and 17. Floquet analysis 
confii this assertion. These gains have been calculated 
using a sub-optimal periodic observer theory that is similar 
to the sub-optimal control theory found in Anderson and 
Moore [9]. The algorithm for calculating such gains is very 
complicated and slow, but executes off line. Discussion of 
its theory is omitted, but results using this filter are presented 
below. 

33 Filter Tuning 

Filter tuning has two goals, timely convergence to an 
accurate estimate and maximum accuracy of the estimate. 
Filter tuning is possible through the selection of Q, R, and 
P&). Q and R determine the trade-off between the filtering 

of measurement noise and the rapid tracking of disturbance 
noise-induced state variations. P(t0) determines the rapidity 

of the initial filter convergence. In steady state, Q and R also 

determine the filter stability as a by-product of the 
measurement noise/disturbance noise trade-off. P&) has no 

effect on the steady state performance of the filter. 

The filter needs to have a rapid initial convergence 
because its mission is to accurately determine attitude with 
one orbit's worth of magnetometer data and poor initial 
attitude estimates. This means either a large P(b) compared 

to R or a large Q compared to R. For the extended Kalman 
filter, which is inherently a time-varying filter, the former 
method has been used to achieve rapid initial convergence. 
The latter method has been used for the fixed-gain filter 
because it is a steady-state filter; it has no P(@. This points 

to one advantage of time-varying filters: they allow rapid 
convergence without sacrifice of steady state filtering 
optimality. 

Optimal steady-state tuning of the filter is important to 
achieving the accuracy goal of k lo. The levels of 
measurement noise and disturbance torque that are present in 
a real S/C system make this a challenging goal. For the 
extended filter, this tuning is achieved by setting Q and R to 

magnitudes representative of the expected disturbance inputs 
and measurement noise. For the one case where detailed 
error analysis has been done, the disturbance torque level 
has been based on models of atmospheric drag torque and 
solar radiation pressure torque. The measurement noise has 
been based on magnetometer digitization error. The 
measurement error is actually much larger due to analog 
magnetometer noise and field model errors, so the filter is 
somewhat over sensitive to measurement noise in this case. 

4 Evaluation of Filter Performance: Objectives and Tools 

4.1 Filter Performance Criteria 

There are two criteria for satisfactory filter 
performance: Does it converge? How accurate are its 
estimates of the S/C attitude? Because the system is 
nonlinear, filter stability is not guaranteed for large initial 
errors in the state estimate. Furthermore, the rate of 
convergence of stable filters is important because of the 
mission requirements; convergence must be achieved within 
one orbit. The importance of estimation accuracy is self 
evident. To evaluate the filter with respect to these two 
criteria is the objective of the test procedures that are outlined 
below. Results are reported in Section 5. 
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4.2 Analytical Tools for Performance Evaluation 

The linearized model of the S/Cs  attitude dynamics, 
eq. 16 and 17, provides a valuable tool for analyzing filter 
stability and accuracy. The corresponding discrete-time 
model takes the form 

where N is the number of magnetometer samples per orbit. 
Because the system in eq. 16 and 17 is periodic with the 
orbital period, the above discrete-time system is periodic 
with period N. 

System observability from one orbit's worth of data 
can be analyzed by computation of the 1-orbit observability 
Gramian [lo]. This Gramian is 

N 

k= 1 
6 = C@T(tk,b)HT(tk)H(tk)@(tk,b) (34) 

If this 9x9 matrix is nonsingular, then the system is 
observable from one orbit's worth of data and there is hope 
for constructing a filter that converges in one orbit. One 
would expect this matrix to approach singularity with 
decreasing orbital inclination. A study of this dependence 
would map out the inclinations where the filters under 
consideration can be applied. The only observability 
Gramians computed for this study, however, were for the 
two orbital inclinations mentioned in Section 2,43O and 57O. 

Filter stability can be analyzed by applying Floquet 
theory to the discrete-time model of the steady-state filter. 
The steady-state, linear-model filter gains, Kk fork = l...N, 

are periodic with period N; so, the filter itself is periodic. 
The one-orbit state transition matrix of the filter becomes: 

(35) 

where the CL subscript means closed-loop in the sense that 
the open-loop system state transition matrix and the fiter 
gains are factored into this expression to give the 1-orbit 
observer error state transition matrix. The eigenvalues of 
@CL(tN&,) must all have magnitudes less than unity for filter 

stability, and the smallness of the eigenvalue magnitudes 
indicates the rate of convergence. 

Accuracy of the filter can also be studied with the 
linearized, steady-state filter model. Given measurement and 
disturbance noise covariance matrices. R and Q, the periodic 
linear-filter covariance, P+(tk) fork = O...N, can be 

determined from the following linear system of equations: 

+ Kk+lR KTk+l for k = 0, ..., N-I 

The Q and R matrices used here must be the best estimates of 
the actual disturbance and noise covariances, whereas those 
used in determining the 

filter calculation may differ from the best estimates for 
various reasons. The 1-orbit average of the covariance yields 
the mean square fiter accuracy: 

in an optimal or sub-optimal 

N-1 
P, = p+(tk) 

k=O 
(37) 

which is a good measure of the effects of random 
disturbances and measurement noise on the filter accuracy. 

4 3  Simulation Testing 

Simulation testing is an important complement to 
analysis for purposes of filter evaluation. Nonlinearities may 
cause the filter to diverge for large initial attitude errors. 
Systematic errors such as parameter uncertainty or biases 
may degrade stability or accuracy or both. Linear analysis 
cannot evaluate these effects, but simulation can. 

Each simulation test has two parts, a simulation and a 
filter. The simulation starts with an "actual" initial state, 
~ ( b ) ,  and integrates the S/C attitude dynamics equations, eq. 

1-3 or eq. 16, to produce a simulated "actual" state time 
history, X(tk) fork = 0,1.2, ... It also simulates the 

magnetometer measurements to produce a measurement time 
history, bm,,(tk) fork = 0,1,2, ... The filter takes these 

simulated magnetometer measurements, combined with 
initial estimates of the state and covariance, and produces an 
estimate of the state time history, ]7+(tk) for k = 0,1,2, ... 
Evaluation of the fiter is accomplished by comparing the 
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"actual" state time history with the estimated state time 
history. Figure 2 depicts this two-part process, the flow of 
information between the parts, and the information used in 
evaluating the fiter. For a good filter c+(Q will converge 
quickly to x(&) and stay near it despite large discrepancies 
between ?(%) and x(%) and despite disturbance torques, 

measurement noise, and modeling error. 

Several properties of the filter have been evaluated with 
this simulation test scheme: the ability of the filter to 
converge from large initial attitude or rate errors, the ability 
of the fiter to estimate constant disturbance torques, filter 
accuracy in the face of random disturbance torques and 
measurement noise, fiter accuracy in the face of parameter 
errors in the S/C attitude dynamics model, and fiter accuracy 
in the face of magnetometer biases. The attitude, rate, and 
torque estimation capabilities have been tested simply by 
running the nonlinear simulation and the filter starting each 
with different initial conditions (remember, disturbance 
torque is treated as a state). Filter accuracy in the face of 
random inputs has been evaluated by linear analysis, and for 
verification purposes, by simulation. The latter has been 
done by using time-varying measurement noise and 
disturbance torque models in appropriate parts of the 
simulation. 

Attitude-dynamics parameter mors and measurement 
biases are systematic errors. Evaluation of their effects is 
tricky. They may or may not affect filter stability. They will 
certainly affect accuracy. The method used to evaluate these 
effects has been to simulate with one attitude 
dynamics/measurement process model and filter with a 
different model, the difference being the particular systematic 
error under consideration. The filter's stability and accuracy 
are then evaluated by comparison of the simulated "actual" 
state time history with the estimated state time history. 
Convergence is evaluated by comparing these two time 
histories for the first orbit. Accuracy is evaluated by taking 

the root mean square value of the difference between the 
estimated state and the "actual" state for all subsequent 
orbits. Convergence and accuracy are both dependent on the 
magnitude of the modeling errors. They may also be 
dependent on the magnitude of the S/C librations. Therefore, 
correct sizing of the errors and of the S/C libration amplitude 
is critical to correct analysis of these effects. 

5 Filter Performance Results 

5.1 Convergence 

Filter convergence can be achieved if the 9x9 1-orbit 
observabifity Gramian (eq. 34) is nonsingular. This has been 
found to be the case for low Earth orbits at both 43' and 57' 
inclination. For S/C 1 of Table 1 in the 43' orbit, the 50- 
samples-per-orbit Gramian has a ratio of minimum 
eigenvalue to maximum eigenvalue of ~ x I O - ~ .  If the constant 
disturbance torque columns and rows are omitted, then the 
ratio increases to 3x106 for the resulting 6x6 sub-Gramian. 
For S/C 2 operating in the 57O orbit, a full Gramian has a 
minimum to maximum eigenvalue ratio of 6 ~ 1 0 - l ~  (still 
nonzero in double precision arithmetic); whereas, the sub- 
Gramian for observing just the angles and the rates has an 
eigenvalue ratio of 6 ~ 1 8 ~ .  Thus, the filter can be made to 

converge in one orbit. The torques are less observable than 
the angles and rates. All cases are observable, but the second 
S/C case is less observable than the first, probably due more 
to the difference in S/C dynamic properties than to the 
difference in orbit. 

The magnitudes of the eigenvalues of the one-orbit 
filter state transition matrix (eq. 35) are direct measures of 
stability. These have been computed for the time-varying 
fiters in steady-state and for the futed-gain filters. The fixed 
gain filter case that has been analyzed in detail involves S/C 
1 operating in the 43O orbit at 50 magnetometer samples per 
orbit. The lowest achievable maximum eigenvalue magnitude 
for the fixed-gain 1-orbit state transition matrix has been 
0.32, which indicates adequate stability but slow 
convergence. The time-varying extended Kalman filters do 

better, even in steady state. Their 1-orbit state transition 
matrices have maximum eigenvalue magnitudes typically less 
than 0.20. The initial convergence of these time-varying 
filters is even better than this steady-state result indicates 
because of the high values selected for the initial covariance 
matrix, P&). 

This rapid initial convergence is indicated clearly in 
Fig. 3 and 4 for S/C 2 in the 57O orbit. The time-varying 
filter used in this case operates on about 300 magnetometer 
samples per orbit; all of the S/C-I cases used 50 samples per 
orbit. In these figures as in most of the remaining figures, 
the "actual" value, the estimated value, and the estimation 
error for a particular quantity are all plotted together on a 
single graph. The orbital period is a little over 5,000 sec, so 
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convergence takes place within about half an orbit. The 
initial error is 15' each in roll, pitch, and yaw with no initial 
rate errors. The initial filter jitter in the rate estimates (Fig. 4) 
arises because of the high initial filter gains. Perhaps these 
are too high. Essentially, the filter is trying to take first and 
second derivatives to get rate and torque information. 

Figures 5 and 6 further demonstrate the ability of the 
time-varying extended Kalman filter to converge. In the case 
of Fig. 5, a 0.017 N-m aerodynamic pitch torque is acting 
on S/C 1, which is in the 43' orbit. The filter converges to a 
correct estimate of this disturbance torque in just about one 
orbit (5,700 sec). Figure 6 corresponds to the same S/C- 
orbit case with large initial errors in the attitude estimate; the 
total initial rotational error is 45'. The filter successfully 
converges in about one orbit, despite the increased 
significance of nonlinearities. 

Figure 7 also depicts estimation of the attitude of S/C 1 

in the 43' orbit, but the estimates have been generated by a 
fixed-gain filter. These estimates converge from moderate 
initial errors (1 1' in all three axes), but convergence is slow. 
After almost two orbits errors on the order of 1' still persist. 
This makes sense in light of the large maximum filter 
eigenvalue. This convergence rate is too slow for the filter's 
intended purpose. Time-varying fdters are preferable to fixed 
gain filters because of the ability to achieve faster initial 
convergence by increasing P-(b). 

5.2 Steady-State Error Analysis 

Error analysis has been done for S/C 1 operating in the 
43' orbit. This error analysis combines the linear analysis 
technique described in Section 4.2 with the simulation 
technique described in section 4.3. The linear technique has 
been used for random errors, the simulation technique for 
systematic errors. The final error budget combines the two in 
a square-root-of-the-sum-of-the-squares (RSS) sense. 

The random effects considered are time varying solar 
and atmospheric drag disturbance torques (constant 
disturbance torques do not affect the error because they are 
estimated as part of the filter state vector), random 
magnetometer measurement error and digitization error, and 
random or high-order International Geomagnetic Reference 
Field (IGRF) model error. The disturbance covariance 
matrix magnitude is based on the results of a solar torque 
and aerodynamic torque analysis for the S / C .  The 

magnetometer random error is based on a 5 mGauss spec for 
its accuracy and a 12-bit digitization. The field error was set 
at 0.41' nns per axis based on experience with the IGRF 
model data [6 ] .  

Figure 8 depicts a simulation of the effects of one of 
the random errors, magnetometer digitization error. Initial 
convergence is hardly affected by this random process; 
convergence to within 0.5' still occurs within one orbit. 
Afterwards, random effects dominate the error signal. This 
calls for proper selection of the Q and R filter matrices for 
optimal steady state filter performance. 

The systematic error magnitudes have been derived 
from typical S/C 1 specifications. Errors of 2% in the 
magnitudes of the principal moments of inertia were used. 
This number is based on the possible variability of the boom 
lengths and tip mass weights. Errors of 1.5' for the principal 
axis orientations were used to generate the cross product of 
inertia errors. This magnitude is based on angular accuracy 
specifications for the booms. A 5% error for the pitch wheel 
angular momentum was used. based on hardware 
specifications. A 1.4 N-m-sec mor  for the magnetically- 
anchored damping constant was assumed, a typical level of 
variability on orbit. A 3 mGauss bias error per axis for the 
magnetometer was used based on a typical magnetometer 
spec. 

Representative libration magnitudes were used for the 
error budget simulations: 0.4' peak-to-peak roll angle 
oscillations, 4.00 peak-to-peak pitch angle oscillations, and 
1.6' peak-to-peak yaw angle oscillations. These libration 
magnitudes are based on analysis of typical S/C 1 motions 
on orbit. 

Figures 9 and 10 are typical of the simulation/filter time 
histories that have been used to evaluate the effects of 
systematic errors. The simulation in Fig9 corresponds to 
discrepancies between the filter model and the simulation 
model of 1 So in all three principal axes. The discrepancy 
corresponding to Fig. 10 is 1.4 N-m-sec in the passive 
damping constant. The filter converges in both these cases. 
As per the analysis description at the end of Section 4.3, the 
steady state error contributions have been taken to be the 
post-one-orbit rms error values. 

Table 2 summarizes the error budget for this case. 
According to this analysis the filter meets the 1' attitude 
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2% Roll-Axis Moment of Inertia Error 0.015 0.021 0.026 
2% Pitch-Axis Moment of Inertia Error 0.016 0.027 0.033 
2% Yaw-Axis Moment of Inertia Error 0.006 0.011 0.013 
1 . 5 O  Principle Axes Skew Error (in all three axes) 0.017 0.041 0.063 

1.4 N-m-sec Magnetically-Anchored Damping Error 0.056 0.112 0.159 

5% Pitch Wheel Momentum Error 0.008 0.014 0.017 

3 mGauss Magnetometer Bias Error 0.231 0.369 0.568 
Random Measurement and Field Model Error 0.345 0.789 0.816 

Random Disturbance Torque Error 0.009 0.016 0.023 
--- 

RSS Error 0.420 0.880 1.010 

knowledge goals in roll and pitch, but misses slightly in 
yaw. These are 1-0 numbers. 

The main contributors to the errors are uncertainty in 
the IGRF model and magnetometer accuracy limitations. 
Increasing the magnetometer accuracy by a factor of 5 would 
decrease the RSS error by 40 %. Increasing the field model 
accuracy would also have a significant beneficial impact on 
the error budget. Decreasing the error in the knowledge of 
the magnetically-anchored damping constant would further 
improve the filter accuracy. Increasing the R weighting in the 
filter might also improve things. The current low R value 
causes the filter to rely too heavily on each magnetometer 
measurement, hence the large effects on accuracy of 
measurement-type errors and the small effects of disturbance 
torque errors and modeling errors. 

A significant result of this analysis is the relative 
insensitivity of the filter to angular shifts in the S/C principal 
axes. The filter identifies these as disturbance torques and 
continues to achieve attitude accuracy on the order of 0.06O 
or better (neglecting other contributions to error). despite the 
1.5O bias in the spacecraft attitude from that predicted by 
gravity gradient analysis and the modelled products of 
inertia. 

5.3 Notes on Filter Performance 

This filter runs relatively fast. It is able to perform one 
orbit's (50 samples) worth of filtering in about 3 minutes 
when operating on an INTEL 8088/8087-based personal 
computer with an 8 MHz clock rate. This time does not 
include the time to compute the IGRF model from a spherical 
expansion. In this particular filter implementation, the field 
calculation is done offline and the filter gets the resulting data 
from a table look-up. 

Several problems having to do with convergence occur 
with this filter. One problem occurs in covariance 
initialization. For the case of "large" diagonal P&) and 

"small" R, if the initial magnetometer measurement occurs at 
b, then P(b) is immediately updated to yield P+(b) before 

the first covariance propagation, and the filter converges. If 
the fist magnetometer measurement occurs at tl, on the 
other hand, then propagation to P-(tl) occurs first, and the 
filter sometimes fails to converge. This is because @(tl,b) 

has some large elements for long sampling periods, which 
makes P(tl) very high and results in very high filter gains. 

These cause divergence due to nonlinearities. 

Another convergence problem occurs because of the 
quaternion update scheme in eq. 24 and 25. The argument of 
the square root in eq. 24 becomes negative for very large 
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initial attitude errors. This occurs because the linear update in 
eq. 24 does not recognize when it is asking for more angular 
correction than makes physical sense. This problem occurred 
for an initial angular error of 90' (the filter did converge for 
a 60' initial error). It also can occur when filter gains are too 
high -- P(t,,) or Q or both are too large relative to R. A way 

to avoid this would be to add a further nonlinearity to the 
quaternion update to scale down updates that are physically 
unrealizable. 

6 Conclusions 

The modified extended Kalman filter described and 
analyzed in this paper can estimate 3-axis S/C attitude, 
attitude rate, and constant disturbance torques solely h m  3- 
axis magnetometer measurements distributed over one orbit. 
The filter works for gravity-gradient stabilized S/C operating 
in inclined, low-Earth orbits. The filter can converge from 
initial attitude errors as large as 600 and can achieve a 1-0 
attitude accuracy of 1' or better on all three axes. 

Filter performance has been evaluated in two ways: by 
linear analysis of small perturbations from the nominal 
gravity-gradient orientation and by filtering of magnetometer 
data generated by a nonliiear S/C simulation. The linear 
analysis has confirmed the observability of the system and 
the stability of the filter. Also, it has predicted the inaccuracy 
induced by random disturbances and measurement noise. 
The nonlinear simulation has demonstrated the filter's abiity 
to converge from large initial errors and has predicted the 
contributions of systematic errors to inaccuracy. 

For one of the S/C-orbit cases considered, the most 
significant contributors to filter inaccuracy are magnetometer 
inaccuracy and inaccuracy of the knowledge of the Earth's 
magnetic field. Reduction of the filter's 3-0 attitude 
uncertainty to 1' could be achieved by use of a 
magnetometer with 1 mGauss la accuracy in combination 
with a model of the Earth's magnetic field that is accurate to 
0.1' 1-0. The necessary accuracy increases are about 3 times 
for the magnetometer and about 4 times for the field model. 
More accurate predictions of the passive magnetically- 
anchored damping factor would also improve filter accuracy. 

7 Recommendations and Planned Follow-Up Work 

Comparison of these accuracy and convergence results 
with flight test results is planned. There are plans to launch a 

satellite using this filter in the ground station as a back-up 
attitude determination system. The S/C will also carry optical 
attitude determination instruments, which are more accurate 
than the magnetometer. Comparison of filter attitude with the 
attitude determined by the more accurate system will provide 
a bench mark for its evaluation. A post-launch action that 
will be considered for improvement of the filter accuracy is 
on-orbit magnetometer calibration and bias determination 
similar to what was done in Ref. 4. 

A related application for magnetometer data fitering 
could be made on the autonomous satellite navigation 
problem. The observability of the attitude/trajectory system 
should be checked, this time retaining length information fox 
the field vector. The system may be observable. In that case, 
a navigation system based solely on magnetometer 
measurements or on a combination of horizon sensor and 
magnetometer measurements would be theoretically 
possible. 

The filter described in this paper coupled with a 
magnetometer and sufficient computer capacity can be used 
when a low-cost, light-weight, low-accuracy system for 
attitude determination is required. 
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